
Economic Theory (2007) 32: 523–549
DOI 10.1007/s00199-006-0122-6

RESEARCH ARTICLE

Michael Mandler

Policy discrimination with and without
interpersonal comparisons of utility

Received: 20 April 2004 / Accepted: 17 April 2006 / Published online: 28 June 2006
© Springer-Verlag 2006

Abstract Can the Pareto criterion guide policymakers who do not know the true
model of the economy? If policymakers specify ex ante preferences for agents,
then Pareto improvements from a distorted status quo are usually possible, and with
more commodities than states, one can implement almost every Pareto optimum.
Unlike the standard second welfare theorem, planners cannot dictate allocations:
agents must trade. Unfortunately ex ante preferences impose interpersonal com-
parisons. If policymakers merely aim to maximize some social welfare function
then optimal policies form an open set; hence small changes in the environment do
not necessitate any policy response. Planners with symmetric information about
agents can sometimes intervene without making interpersonal comparisons.
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1 Introduction

There is a well-known puzzle about the second welfare theorem: if a policymaker
knows the preferences and endowments of all agents, then it might as well act like
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a central planner and just assign agents the Pareto optimal allocation that it wants
them to consume. If on the other hand the policymaker is uncertain about the econ-
omy’s primitives it will be unable even to identify Pareto optima, let alone design
transfers that implement them. So in what sense does the second welfare theorem
recommend markets as an allocation mechanism? This puzzle bolsters the wide-
spread doubts that the Pareto criterion can deliver practical advice. To address these
questions, we make explicit policymakers’ lack of information about primitives and
ask when policymakers can recommend policies that correct a preexisting distor-
tion, which for concreteness we assume to be taxes on net trades. As we will see,
if a policymaker can posit a hypothetical ex ante stage at which each agent shares
the policymaker’s uncertainty and can make interpersonal comparisons between
the potential preferences any given agent might have, then in some cases almost
any first-best ex ante Pareto optimum can be achieved, and with policies that are
just as sweeping as second welfare theorem policies: all tax distortions should be
removed. In contrast to the puzzle, a policymaker cannot obtain these optima by
dictating allocations; markets have to be used. In the remaining cases where the first
best cannot be reached, policymakers can generically achieve at least some ex ante
Pareto improvement, and again markets are indispensable. So there is a framework
that makes rigorous the second welfare theorem’s endorsement markets.

We use a general equilibrium model that is standard except that net commodity
purchases are taxed. This distortion ensures that the status quo appears to call for
policy intervention – externalities could serve just as well. When policymakers
know the primitives of the model, the welfare theorems imply that any policy (a
tax rate for each good and a redistribution of endowments) that collects positive
tax revenue is Pareto dominated by some zero-tax policy. We suppose instead that
although each agent knows his or her own characteristics, the policymaker has
only a probability distribution over the primitives of the economy, and say that
policymaking uncertainty then obtains.

When a policymaker can posit ex ante preferences for agents in the presence
of policymaking uncertainty, call a policy x an ex ante improvement over y if x
Pareto dominates y in terms of these ex ante preferences. If there are at least as
many goods as states, then the second welfare theorem generically holds: almost
every first-best allocation can then be reached by some policy (Theorem 1). But in
contrast to the standard presentation of the second welfare theorem, in which the
government knows the model and could therefore institute optima by fiat instead,
under policymaking uncertainty individuals and markets have an indispensable role
to play. Agents collectively know which state has occurred, and markets harness
that information. If the number of states is larger than the number of goods, then
generically there is at least some policy that in the face of the preexisting distor-
tion achieves an ex ante Pareto improvement (Theorem 2). Thus, despite doubts
about the Pareto criterion’s practicality, one can both acknowledge a policymaker’s
uncertainty and decree active policy advice.

But difficulties with the Pareto criterion remain. In the absence of policymak-
ing uncertainty, the Pareto criterion may be viewed in two essentially equivalent
ways: policy x weakly Pareto dominates y if (1) no agent is made worse off at x
compared to y, or (2) any welfare-maximizing planner, no matter how the plan-
ner weights individual utility functions, would weakly recommend x over y. With
policymaking uncertainty, this equivalence breaks down. The ex ante approach,
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which we also call agent-based, extends method (1) by identifying each agent
with an ex ante preference relation. But these ex ante preferences must weight the
potential utility functions that an agent might have. Since the agents themselves
never face any uncertainty about what their preferences are, the ex ante preferences
must rely on the policymaker’s judgments about how to interpersonally compare
welfare. Thus, our extension of method (1) to policymaking uncertainty no longer
shares the advantage of method (2) of not committing to a particular weighting of
individual utility functions.

To stay free from interpersonal comparisons, we define a second ordering that
follows (2) in remaining neutral regarding weights on utility functions. We say pol-
icy x is utility-independent superior to y if, for all sum-of-expected-utilities social
welfare functions, x is recommended over y. We also label a policy x to be max-
imization-optimal if there are utility functions for the potential agents such that x
maximizes the resulting sum-of-expected-utilities welfare function. This leeway to
choose utility representations means that utility-independence and maximization
optimality are agnostic about how to compare the welfare of different preferences.
Utility-independence or maximization optimality raise the danger that very large
numbers of policies will be declared optimal, in which case policy paralysis occurs.
Our first policy paralysis result states that if a sufficient number of states (which
can have arbitrarily small probability) are added to a base model, then any policy is
utility-independent optimal (Theorem 3). This and related results lead us to identify
agnosticism about interpersonal comparisons as the source of the impracticality of
the Pareto criterion.

A countervailing consideration sometimes permits policy discrimination even
when interpersonal comparisons are prohibited. We will require social welfare to
be a function only of agents’ ordinal and cardinal characteristics and not their
indices. This restriction complies with a long tradition of anonymity postulates in
social choice theory, and since it limits the set of admissible welfare functions it
strengthens our policy paralysis results. But the restriction also implies that when a
policymaker has symmetric information about two agents the policymaker should
assign the same expected welfare to either agent receiving any given consumption
bundle – no matter how the policymaker believes interpersonal welfare compari-
sons should be made. As we will see in the Example of section 5, when information
is symmetric the concavity of utility implies that a utility-independent ranking will
recommend that each agent consume the same bundle. Lerner (1944) famously
used a similar logic to conclude that equalizing the distribution of endowments
in a one-commodity model necessarily increases expected social welfare. Accord-
ing to Lerner, even policymakers who disagree about which types of agents more
efficiently translate utility into social welfare can agree on an equal income dis-
tribution if they have symmetric information about which agent is of which type.
Lerner’s reasoning implies that agnosticism about interpersonal welfare compari-
sons can sometimes facilitate policy discrimination and that utility-independence
does not always lead to complete paralysis. Our Example shows that Lerner’s
argument extends to multicommodity settings and can allow policy intervention
even when a planner foregoes problematic interpersonal comparisons. Lerner’s
work remains strangely ignored in general equilibrium theory, a lapse we hope to
remedy.



526 M. Mandler

Our second policy paralysis result, while not contradicting Lerner’s argument,
shows that plausible conditions will rule out the symmetry it presupposes. We
show that under these conditions the maximization-optimal policies form an open
set (Theorem 4). Consequently, if some tax and transfer policy is maximization
optimal and the parameters of the model change slightly, that policy will remain
optimal: local policy paralysis obtains. For example, suppose that one agent i’s
consumption of good x imposes an externality on some other agent j . If a planner
were maximizing some fixed social welfare function, a small upward shift in i’s
externality effect on j would normally call for a small policy response, usually an
increase in the tax on x . But if a policymaker instead wants simply to maximize
some social welfare function (because to stay neutral, all welfare functions must
be viewed as equally legitimate), the increase in the externality will not lead to
any policy response. With the larger externality and the same tax rates the poli-
cymaker would still be maximizing a welfare function, perhaps one that assigns a
lesser weight to j’s utility function. That social-welfare maximization can require
nonzero taxes is hardly news (see, e.g., Mirrlees 1986). Our point is that a rule that
says policymakers should maximize some welfare function leads to a very large
number of tax vectors being optimal. It can be that locally every tax and transfer
policy is optimal; each policy serves as an efficient way to serve some classical
social welfare goal.

To summarize, the Pareto criterion is workable if policymakers posit an ex
ante stage at which agents experience the policymaker’s lack information; with-
out ex ante preferences, policy adjustment is problematic. And since this ex ante
stage is hypothetical, the preferences that hold at this stage impose interpersonal
comparisons of welfare.

We take the policymaker’s information to be fixed in this paper; the implemen-
tation and mechanism design literatures in contrast consider policies that induce
agents to reveal their private information. Our modeling strategy is partly guided
by our focus on the traditional policy tools of competitive markets. But the two
approaches are closely related. Our model confronts each agent with the same
choice set of net trades, similar to the net trades that arise with Diamond–Mirrlees
taxes. As Hammond (1979) points out, if a large number of agents play an anon-
ymous revelation game in which agents announce their characteristics, each agent
could equivalently be confronted with a common choice set of net trades. More-
over, any implementation game must be anonymous if the policymaker begins with
symmetric information about agents’ characteristics. Finally if agents anticipate
that, following the play of the revelation game, they can trade further on competitive
markets, the only final allocations that can occur in equilibrium are those that could
arise if agents chose from Diamond–Mirrlees choice sets of net trades. Thus, with a
large number of agents, our model becomes similar to an implementation problem.
Hammond used dominant strategies in his paper, but see Guesnerie (1995) and the
references cited there for similar Bayesian arguments.

The contrast between the present paper and the implementation approach is
misleading in a second and more important respect. We reach policy paralysis con-
clusions even when a policymaker is virtually certain about agent characteristics.
Hence these results apply to any mechanism that does not reveal agent character-
istics with complete certainty. When choosing economy-wide policy instruments,
such as tax rates, governments inevitably have to come to policy decisions in the
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presence of at least some residual uncertainty about agents’ characteristics, and
our results hold in that setting.

The ex ante or agent-based approach specifies ex ante preferences for agents
and is therefore formally a model of incomplete markets. It so happens in the
present setting that there are no traditional assets, but this wrinkle does not inter-
fere with the analytical machinery of the incomplete markets literature (see, e.g.,
Geanakoplos 1990; Magill and Quinzii 1996). Indeed, it is a pleasant surprise that
the techniques of incomplete markets are so well-suited to explaining seemingly
distant social choice issues. Conversely, we argue in the conclusion that our results
shed light on the dilemmas of policy design that have appeared in the incomplete
markets literature, and on the theory of the second best as well.

2 Welfare criteria with policymaking certainty

We first lay out a benchmark model that we suppose is known to the policy-
maker. There are L commodities and J agents. Each agent j has an endowment
e j ∈ RL++ and a utility function u j defined on consumption bundles x j ∈ RL+. Let
e ≡ (e1, . . . , eJ ) and let xi j and ei j refer, respectively, to agent j’s consumption
and endowment of good i . We assume that each u j is twice continuously differen-
tiable, differentiably strictly concave, and differentiably strictly increasing, and that
the indifference curves of u j that intersect RL++ do not also intersect the coordinate
axes.1 An economy is a (e j , u j )

J
j=1 and an allocation is a x ≡ (x1, . . . , xJ ) ∈ RL J+

such that
∑J

j=1(x j − e j ) = 0.
The economy begins with arbitrary ad valorem taxes τ = (τ1, . . . , τL) ≥ 0

that (to ensure that the taxes are in fact distorting) are imposed only on the value of
net purchases. The revenue that results is for simplicity distributed in equal parts
to the J individuals. Letting p ∈ RL+\{0} indicate the before-tax price vector and
t ≥ 0 the government’s tax revenue, the budget set facing agent j is:

B j (p, τ, e j , t) =
{

x j :
L∑

i=1

(

(1 + τi )pi max
[
0, xi j − ei j

]

+ pi min
[
0, xi j − ei j

]
)

≤ (1/J )t

}

.

Definition 1 An equilibrium with taxes τ is a (p, x) such that (1) x is an allocation,
(2) t = ∑J

j=1
∑L

i=1τi pi max[0, xi j−ei j ], (3) for each agent j, x j ∈ B j (p, τ, e j , t),
and (4) x ′

j ∈ B j (p, τ, e j , t) ⇒ u j (x j ) ≥ u j (x ′
j ).

1 We use the notation: x ≥ y ⇔ xi ≥ yi , all i; x > y ⇔ x ≥ y and x �= y; and x >> y ⇔
xi > yi , all i. Formally, u j being differentiably strictly concave and differentiably strictly increas-
ing means that, for all x j , D2u j (x j ) is negative definite and Du j (x j ) >> 0. The indifference
curve condition is that, for all x j >> 0, {z ∈ RL+ : u j (z) = u j (x j )} ∩ (RL+\RL++) = Ø.
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Under our assumptions, an equilibrium for the model exists for any τ .2 Observe
that if τ is sufficiently high in all coordinates, agents do not trade, they consume
their endowment.

In addition to setting τ , the government can also transfer endowments by choos-
ing a �e ≡ (�e1, . . . , �eJ ) ∈ RL J such that

∑J
j=1�e j = 0. We require that

�e be chosen so that an equilibrium exists, e.g., by supposing that e +�e >> 0.
Multiple equilibria may arise for a given (τ,�e), but since we want to give the pol-
icymaker as much latitude as possible we assume that the policymaker can choose
which equilibrium allocation obtains with (τ,�e). Let f ≡ ( f1, . . . , f J ) indicate
an equilibrium allocation that can occur with (τ,�e), and call (τ,�e, f ) a policy.
Also, (τ,�e) are policy instruments, and we say that a policy (τ,�e, f ) reaches
the allocation f . Beginning at a status quo equilibrium (p, x) with taxes τ , the
policy of maintaining the status quo is simply (τ ,�e = 0, f = x).

The Pareto ordering may be characterized in two different ways under policy-
making certainty. One way is to define an allocation x to be ex ante or agent-based
superior to x ′ if for all agents j , u j (x j ) ≥ u j (x ′

j ), and for some j , u j (x j ) > u j (x ′
j ).

The agent-based criterion assigns a welfare significance to each agent and thus to
each agent’s index. The modifier “ex ante” will be self-explanatory once we intro-
duce policymaking uncertainty.

An alternative utility-independent characterization of the Pareto ordering de-
clares one allocation superior to another if it is recommended by all possible meth-
ods of making interpersonal comparisons of utility. We view a method for making
interpersonal comparisons of utility as a set of weights given to utilities when they
are summed to a social welfare function. In contrast to the agent-based approach,
the principle that a policymaker should remain agnostic about how to make inter-
personal comparisons does not assign any importance to or even mention agent
indices.

We impose two restrictions on which utility functions can be admitted into
social welfare sums. First, for each j , any two admissible utility representations
for j can differ only by an increasing affine transformation. We will use this restric-
tion repeatedly, but in this section, it is dispensable since the essential equivalence
of our two characterizations of the Pareto ordering would continue to hold if we
admitted all increasing transformations; we keep the restriction here to ease com-
parison with the rest of the paper. For now, one may justify both the restriction
and our use of welfare functions that sum individual utilities by supposing that the
goods in the model are contingent commodities (say because there is objective,
non-policymaking uncertainty in the background) and that each agent j’s prefer-
ences have a von Neumann–Morgenstern (vNM) utility representation given by u j ;
Harsanyi (1955) then implies that every vNM social welfare function that obeys the
Pareto principle can be represented as a sum of increasing affine transformations
of the u j . In subsequent sections, uncertainty will be intrinsic to the environment
and we will not need to implant it separately.

Second, in any welfare function agents with identical sets of cardinal utility
functions must be assigned the same utility function.

2 See Shafer and Sonnenschein (1976), particularly note 4.1, and observe that e j >> 0 is
always an element of B j . Consequently, B j , seen as a correspondence of x (via the effect of x
on t) and p, is, in addition to being convex-valued, also continuous and nonempty-valued.
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Definition 2 For each j , let U j denote the set of all increasing affine transforma-
tions of u j . A utility assignment is a u = (u1, . . . , u J ) such that for all j , u j ∈ U j ,
and the following anonymity requirement obtains: for any pair of agents ( j, h), if
U j = Uh then u j = uh. The allocation x is utility-independent superior to x ′ if,
for all assignments u,

∑J
j=1u j (x j ) >

∑J
j=1u j (x ′

j ).

The anonymity requirement blocks any dependence of the social welfare func-
tion on agent indices, and therefore fits with the utility-independent rather than
the agent-based rationale for the Pareto criterion. Anonymity plays two impor-
tant roles: it makes our policy paralysis results in section 5 stronger, and it makes
possible important exceptions to policy paralysis when the policymaker has sym-
metric information about some agents. The requirement also follows a long social
choice tradition (dating to May 1952, Suppes 1966, and Sen 1970) that maintains
that an agent’s index is irrelevant for social decision-making; only information
about preference or cardinal strength of preference should matter. Even a planner
agnostic about how to make interpersonal comparisons would not normally hold
that one agent is more capable of experiencing satisfaction than another apparently
identical agent based solely on the agents having different indices. The anonymity
requirement is nevertheless weak. It has bite only when a policymaker encounters
a set of agent who are both ordinally and cardinally identical; when there is no
policymaking uncertainty, these cases are dismissible.

Here and subsequently, we define a policy (τ,�e, f ) to be superior to
(τ,�e, f )′ in either an ex ante/agent-based or utility-independent sense if f is
superior to f ′ by the corresponding ordering of allocations. But the distinction
between policies and allocations is irrelevant in the certainty model: any allocation
x can be reached by a policy that sets�e = x −e and sets τ high enough to induce
agents not to trade.

The ex ante/agent-based and utility-independent orderings usually coincide
under policymaking certainty, but our anonymity requirement permits an excep-
tion. If x is agent-based superior to x ′ then x is also superior to x ′ by the util-
ity-independent definition, but the reverse implication need not hold. For instance,
if J = 2,U1 = U2, and U1 contains only strictly concave functions, then an
allocation x such that u1(x1) > u1(x2) is utility-independent inferior to a x ′ with
x ′

1 = x ′
2 = (1/2)x1 + (1/2)x2. Yet clearly x ′ is not superior to x by the agent-

based ordering. In the absence of policymaking uncertainty, such cases are a minor
distraction that we can exclude with a diversity condition stating that no pair of
agents has the same set of cardinal utilities; the agent-based and utility-independent
orderings then will rank allocations in the same way. We will see that a comparable
diversity condition is inappropriate under policymaking uncertainty.

The agent-based and utility-independent orderings automatically generate defi-
nitions of optimality by the requirement that there are no dominating allocations. In
addition, we say an allocation x is maximization optimal if there is an assignment
u such that

∑J
j=1u j (x j ) ≥ ∑J

j=1u j (x ′
j ) for all other allocations x ′. A maximiza-

tion-optimal allocation must also be utility-independent and agent-based optimal,
but the reverse implications need not hold. Thus, as well as being more important
in the welfare economics literature, maximization optimality is in principle more
restrictive. But given our convexity assumptions the three definitions of optimality
do coincide at interior optima if the diversity condition holds.
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These orderings and optimality concepts give familiar and decisive advice. If
the economy begins at a status quo equilibrium (p, x) with tax vector τ and t > 0
there must be a good i and agent j with xi j − ei j > 0 and τi > 0 and some good
k �= i and agent h �= j with xih − eih < 0 and xkh − ekh > 0. Hence h’s marginal
rate of substitution between i and k must equal pi/(1 + τ k)pk while j’s marginal
rate of substitution between i and k must lie between (1 + τ i )pi/(1 + τ k)pk and
(1 + τ i )pi/pk . The marginal rates of substitution of the two agents therefore differ
and the equilibrium allocation will be neither agent-based or utility-independent
optimal. Under either ordering, there exist allocations x∗ that are both optimal
and superior to x and there are policies (τ,�e, f ) such that x∗ = f , e.g., set
�e = x∗ − e and let τ be arbitrary. The welfare theorems thus give strong advice
when the policymaker knows the model of the economy.

3 Policymaking uncertainty

A policymaker who is uncertain about the economy’s characteristics will face a
finite state space � = {ω1, . . . , ωS}, S ≥ 2, with associated probabilities π =
(π1, . . . , πS) ∈ �S−1++ . Each state ωs specifies for each agent j an ex post util-
ity and an endowment, denoted u j (·, ωs) and e j (ωs) respectively, that satisfy the
assumptions of the certainty model of section 2. A model is a pair (�, π). In section
4, we could let each agent j have a distinct subjective probability π( j). In section
5, the restriction to a single probability distribution strengthens our policy paralysis
conclusions; a diversity of individual probabilities would only expand the set of
tests that a utility-independent improvement would have to satisfy and hence make
policy paralysis more likely.

Consumption by agent j at ωs is denoted x j (ωs). Let p(ωs) denote an equilib-
rium price vector at stateωs , and P the S×L matrix whose sth row is p(ωs). We also
set the following notation for the remainder of the paper: u j = (

u j (·, ω1), . . . ,

u j (·, ωS)
)
, x j = (

x j (ω1), . . . , x j (ωS)
)
, e j = (

e j (ω1), . . . , e j (ωS)
)
, x(ωs) =

(x1(ωs), . . . , xJ (ωs)), e(ωs) = (e1(ωs), . . . , eJ (ωs)) , x = (x(ω1), . . . , x(ωS)).
There may but does not have to be further uncertainty (above and beyond the

policymaking uncertainty) at anyωs . Consumption for j then consists of commod-
ities contingent on the resolution of the additional uncertainty and each u j (·, ωs)
is assumed to be an expected utility representation of j’s preferences at ωs .

An allocation under policymaking uncertainty is a x such that each x(ωs) is an
allocation at ωs . An equilibrium with taxes τ ≥ 0 is now a (P, x) such that, for
each ωs , (p(ωs), x(ωs)) is an equilibrium for the economy that occurs at ωs when
taxes are τ . A policy is a (τ,�e, f ) ∈ RL+ × RL J × RSL J+ such that each f (ωs)
is an equilibrium allocation at ωs when endowments equal e(ωs) +�e and taxes
are τ . Since the policymaker chooses tax rates and redistributions before agents
interact on the market, τ and�e are not state-contingent and therefore retain their
previous dimensionality but f now specifies consumption at each ωs . Let f j now
denote

(
f j (ω1), . . . , f j (ωS)

)
. Given an allocation x and taxes τ , the tax revenue

at ωs is given by t (ωs) = ∑J
j=1

∑L
i=1τi pi (ωs)max

[
0, xi j (ωs)− ei j (ωs)

]
.

After the policymaker selects (τ,�e, f ), markets equilibrate and p(ωs), x(ωs),
and t (ωs) are simultaneously determined. If the function p(·) is invertible, the
state could be inferred from the equilibrium price vector. But such inferences do
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not affect market behavior; agents simply choose utility-maximizing trades given
the observed price vector. The policymaker does care what the true state is, but
(τ,�e, f ) is set before p(ωs) is observed.

We define a parameter space of economies Q by letting e ∈ RSL J++ be parame-
ters, and by assuming for any agent j , any state ωs , and any linear h : RL+ → R
that if u j (·, ωs) + h satisfies our assumptions on utility functions on {x j (ωs) ∈
RL+ : x j (ωs) ≤ ∑J

j=1e j (ωs)} then u j (·, ωs) + h is a possible utility function for
j at ωs . If some goods at ωs are contingent due to additional uncertainty at ωs ,
leading u j (·, ωs) to be separable across those goods, the linearity of h ensures that
this separability is retained. The set Q has a finite number of dimensions and we
denote a typical element of Q as (e, h). For any set A in a finite-dimensional
Euclidean space, a generic subset refers to an open subset of A whose complement
has Lebesgue measure 0.

4 Effective policy discrimination with the ex ante ordering

In the presence of policymaking uncertainty, the ex ante/agent-based approach be-
gins with an ex ante preference ordering for each agent j over the state-
contingent bundles over which j would choose if he or she faced the planner’s
state space. The simplest way to proceed is to endow each agent j with vNM pref-
erences � j over lotteries (probability measures) on the prize space RL+ × � that
has the consumption vector x j (ωs) as a typical element. For each j,� j determines
a preference relation over the subset of lotteries where the probability of x j (ωs)
is πs (the probability held by the planner), and this subrelation will be represent-
able by a function Eu j : RSL+ → R that is separable across states. That is, there
exist functions {u j (·, ωs)}S

s=1 such that Eu j (x j ) = ∑S
s=1πsu j (x j (ωs), ωs) for all

x j ∈ RSL+ . Letting U j (ωs) denote the set of all increasing affine transformations
of u j (·, ωs), we assume that u j (·, ωs) ∈ U j (ωs) for all ωs . In words, j’s ex ante
preferences over goods at any ωs coincide with the preferences that j will in fact
have at ωs . Given that the ex ante stage is hypothetical, there are no further a priori
restrictions to place on the � j . The selection of u j (·, ωs) from U j (ωs) is the math-
ematical step at which the planner imposes interpersonal comparisons of welfare.
We withdraw this step in the next section.

The vNM hypothesis (or a subjective expected utility variant) leads j’s ex ante
utility to have the expected utility form. But in this section, all that matters is that
each agent index j is assigned a single preference ordering, not its separability
across states.3

We now label an allocation x to be ex ante(or agent-based) superior to x ′ if,
for all j , Eu j (x j ) ≥ Eu j (x ′

j ), and, for some j , Eu j (x j ) > Eu j (x ′
j ). This ordering

coincides with the ex ante/agent-based of section 2 when S = 1. Allocation x is
strictly ex ante superior to x ′ if strict inequalities hold for all j . Policies (τ,�e, f )

3 The present model allows agents to have diverse subjective probabilities, say in the sense of
the Anscombe and Aumann (1963) theory. If j’s preferences are given by a u j (·, ωs) at each ωs
and by a measure π( j) � 0, then by selecting the function (πs/πs( j))u j (·, ωs) ∈ U j (ωs) rather
than u j (·, ωs) and using the probability π , we arrive at a Eu j of the form assumed above. This
extension would not be applicable to section 5, where the Lerner example hinges on a specific
and common specification of π .
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are ex ante ranked according to the ex ante ordering of their allocations f. In contrast
to the certainty model, there can now be ex ante optimal allocations that cannot be
reached by any policy (since �e must be constant across states).

By fluke it might happen that the status quo τ and �e = 0 lead to an ex ante
optimal allocation, in which case no policy adjustment would be called for. A result
that there is scope for policy adjustment can therefore at best hold for a generic set
of economies.

The ex ante suboptimality of an economy beginning at a status quo equilibrium
(P, x) with taxes τ can be attributed to two factors. First, if τ is nonzero, x(ωs)
will normally be suboptimal for the economy at ωs . Second, no agent who actually
trades possesses the ex ante utility Eu j ; the trading agents have the ex post util-
ities u j (·, ωs). Consequently, relative to the hypothetical agents with the ex ante
utilities, markets are incomplete and agents cannot insure themselves against the
uncertainty in �. Allocations will therefore normally be ex ante suboptimal even
when τ = 0. As we will now see, the policy instruments τ and �e will typically
allow the policymaker to engineer an ex ante improvement in response to this sub-
optimality: the status quo will typically be ex ante suboptimal relative to what can
be reached by some policy. Most dramatically, if there are at least as many goods
as states, the ex ante/agent-based approach usually recommends policy changes
just as sweeping as the second welfare theorem: virtually any first best allocation
(including ex ante improvements on the status quo) can be reached and with taxes
set to 0.

Theorem 1 If L ≥ S, there is a generic subset of economies G such that for any
economy in G there is a generic subset of ex ante optimal allocations each of which
can be reached by some policy with τ = 0.

The proof of Theorem 1 (in the appendix along with all other proofs) is simple.
Since each agent shares the same marginal rate of substitution at an ex ante optimal
allocation x , there are prices (p(ω1), . . . , p(ωS)) that support the allocation. And
typically, if L ≥ S, the price vectors p(ω1), . . . , p(ωS) that rule at the S states will
be linearly independent. Thus, for each agent j , the equations

p(ωs) ·�e j = p(ωs) · (x j (ωs)− e j (ωs)), s = 1, . . . , S,

have a solution �e j , and so if the policymaker sets τ = 0 and each j’s transfer
equal to this �e j then j can exactly afford the bundle x j (ωs) at ωs when prices
equal p(ωs).

The optimal allocations identified by Theorem 1 cannot be achieved by direct
command decision; the policymaker does not know which ωs obtains, and usu-
ally the target allocation x(ωs) will vary by state. Thus, although Theorem 1 is
akin to the second welfare theorem, it assigns markets a more fundamental role. In
the standard presentation of the second welfare theorem, there is no policymaking
uncertainty (S = 1), and so optimality could always be achieved instead with taxes
left at the status quo levels: let�e move agents’ endowments directly to an optimal
allocation, making trade unnecessary. But when S ≥ 2 agents must typically trade
at all states since the post-transfer endowments e j (ωs) + �e j typically will not
equal the target x j (ωs) at anyωs . Markets and trade therefore have an indispensable
function: unlike the policymaker, agents collectively know which state obtains and
trading allows the economy to utilize this information. Moreover, since agents are
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trading at each state, reaching a first best allocation requires that tax rates be set to
zero.

What can be said when the number of states is greater than the number of goods,
S > L? Generically at least some policy adjustment relative to an arbitrary status
quo is possible:

Theorem 2 If S ≥ 2, then for any τ there is a generic subset of economies G such
that for each equilibrium allocation x with taxes τ of each economy in G there is
a policy that reaches an allocation that is a strict ex ante improvement over x.4

Thus, most arbitrary status quo policies will not be ex ante optimal. And al-
though there may not be a policy with τ = 0 that is ex ante superior to the status
quo, it follows from the proof of Theorem 2 there will be at least some policy in
which τ differs from the status quo τ that is ex ante superior to the status quo:
policymakers can adjust arbitrarily given tax rates.

Policies that achieve strict ex ante improvements are also robust to the addition
of a small amount of uncertainty. Suppose, in the S = 1 certainty model, that we
begin with a status quo equilibrium (p, x) with taxes τ and find a (τ ′,�e′, f ′)
that leads to a strict ex ante Pareto improvement. We can add a small amount of
uncertainty by introducing an arbitrary set of new states and assigning the new
states small probability. Let the entire model be (�, π) with the initial certainty
model’s economy assigned to ω1. If we are given ex ante utilities Eu1, . . . , Eu J
for (�,π), then a policy (τ ′,�e′, f ′′) such that f ′′ (ω1) = f ′ and where the
f ′′(ωs), s �= 1, are set arbitrarily will be strictly ex ante superior to any status
quo policy (τ ,�e = 0, f ) with f (ω1) = x if π1 is bigger than some threshold
π̂1 < 1. So if a policymaker has access to ex ante utilities, then the addition of a
sufficiently small amount of uncertainty will not lead to the reversal of a proposed
policy change. Observe that the probability threshold π̂1 is a function of the ex
ante utilities. For a given (�,π) – even if π1 is near 1 – there may well be ex
ante utilities such that (τ ′,�e′, f ′′) does not lead to an ex ante improvement over a
status quo policy (τ , 0, f ) at which f (ω1) = x . All that is necessary is that at some
ωs some j is worse off with (τ ′,�e′, f ′′) than with (τ , 0, f ) and that u j (·, ωs) is
a sufficiently large multiple of u j (·, ωs).

5 Policy recommendations without interpersonal comparisons of utility

The ex ante or agent-based approach to social decision-making prescribes for each
agent j an ex ante utility Eu j . Each Eu j imposes a weighting of ex post utilities:
given the base set of utilities, u j (·, ω1), . . . , u j (·, ωS), each u j (·, ωs) in Eu j is
an affine transformation of u j (·, ωs). Since the policymaker’s uncertainty about
agents’ potential preferences does not correspond to any uncertainty experienced
by the agents themselves, the weights on the u j must reflect the policymaker’s judg-
ments about which potential preferences experience the greater satisfaction and thus
deserve greater priority. Consider x j and x ′

j such that for some pair of states ωk

and ωs, u j (x j (ωk), ωk) > u j (x ′
j (ωk), ωk) and u j (x j (ωs), ωs) < u j (x ′

j (ωs), ωs).
If U j (ωk) �= U j (ωs), there is no neutral way to decide if j’s welfare is greater with

4 If S = 1 and τ > 0, the conclusion of the theorem continues to hold.
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x j than with x ′
j . Yet the policymaker must specify a preference for j between x j

and x ′
j . If say Eu j (x j ) > Eu j (x ′

j ), the policymaker must hold that the gains of
those ex post preferences of j’s that rank x j ahead of x ′

j outweigh the losses of the
ex post preferences of j’s that rank x ′

j ahead of x j . Given that the actual agent j
never faced this uncertainty, this claim amounts to an interpersonal comparison of
welfare.

To see the similarity between these comparisons for a single j and traditional
social welfare comparisons, consider the Harsanyi (1953) theory of social welfare,
in which an agent ranks social choices while pretending there is an equal chance
that he or she will be any of the agents in society. Whatever the merits of Harsanyi’s
proposal, it requires comparison of different types of satisfaction and will there-
fore reproduce the disputes that vex social decision-making: when parties disagree
on who derives the more intense satisfaction from the allocation of some good,
they will also disagree on how to rank social choices in the Harsanyi’s set-up.
The construction of ex ante preferences for an agent j is strikingly similar to the
Harsanyi problem: the policymaker must rank allocations for j in ignorance of
which preferences j will have; the only distinction of the ex ante problem for j is
that rather there being an equal probability of being each of society’s agents the
probability that j has utility u j (·, ωs) is πs . Indeed the ex ante problem for j and
the Harsanyi problem are so similar that a policymaker pursuing the ex ante Pareto
program would be well-advised to use the Harsanyi thought experiment to choose
weights on the u j (·, ωs). Whether by the Harsanyi device or some other route, a
policymaker may be able to construct ex ante preferences for j but those prefer-
ences will not be controversy-free; any dispute about interpersonal comparisons
will reappear in a disagreement about which ex ante ordering should be employed.

To avoid interpersonal comparisons of utility, we consider alternatives to the ex
ante ordering. The utility-independent ordering does not deem one set of weights
on ex post utilities to be a better way to assemble a social welfare function than any
other set of weights. On the other hand, the ordering ignores the index attached to
each utility, which potentially makes the ordering more discriminating. We begin
by specifying the utilities that can be admitted into social welfare functions in the
presence of policymaking uncertainty.

Definition 5 A utility assignment under policymaking uncertainty is a u =
(u1, . . . , u J ) such that for all agents j and h and all states ωs and ωl , u j (·, ωs) ∈
U j (ωs) and (anonymity) U j (ωs) = Uh(ωl) implies u j (·, ωs) = uh(·, ωl).

A welfare function now assigns a welfare number in R to each allocation in
RSL J+ . Given a utility assignment u,

∑J
j=1 Eu j is the welfare function that assigns

welfare level
∑J

j=1 Eu j (x j ) to allocation x . The definition of utility-indepen-
dence remains as in section 2: allocation x is utility-independent superior to x ′ if,
for all assignments u,

∑J
j=1 Eu j (x j ) >

∑J
j=1 Eu j (x ′

j ). An allocation x is util-
ity-independent optimal if there is no utility-independent superior allocation, and
is maximization optimal if there is an assignment u such that, for all allocations
x ′,

∑J
j=1 Eu j (x j ) ≥ ∑J

j=1 Eu j (x ′
j ). Policies are again ranked or are optimal

based on the allocations they induce. When S = 1, these definitions coincide with
those given in section 2.
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As in section 2, welfare functions use the same utility function to represent all
potential agents with the same set of cardinal utilities and are additively separable
in agents’ ex post utilities. The rationales given earlier for these restrictions still
apply except now uncertainty is intrinsic to the policymaker’s problem and hence
to apply the Harsanyi (1955) theorem on additive social welfare functions we no
longer have to resort to the contrivance that further uncertainty obtains at some
state. The restrictions in any event make our policy paralysis conclusions stronger:
any policy that is utility-independent or maximization optimal with the restrictions
remains optimal without the restrictions, but the reverse implication does not hold.

Some other social-welfare criteria are similar but not identical to utility-
independence. For instance an interim or ex post definition of the Pareto ordering
(Holmström and Myerson 1983) would label one allocation superior to another if
each agent in the distribution of possible agents is at least weakly better off and
one potential agent is strictly better off. Equivalently, we could retain the ex ante
ordering but require additionally that, for allocations to be ranked, every agent j
is better off no matter what subjective probability π( j) is used to calculate j’s
expected utility, which again ensures that when one allocation is ranked superior
to another, no potential agent is worse off. These criteria differ from utility-inde-
pendence because of the latter’s anonymity restriction: a change in allocations can
harm some potential agent and still be a utility-independent improvement if some
other potential agent with the same set of cardinal utility functions enjoys sufficient
utility gains. As mentioned in section 2, the social welfare literature has made a
compelling case for anonymity. In addition, we wish to identify the policy con-
sequences of agnosticism about interpersonal welfare comparisons alone, without
requiring that every potential agent must be left unharmed. Such a requirement
would apply the agent-based approach to the entire set of potential agents, and is
not entailed by a prohibition of interpersonal comparisons per se.

Finally, anonymity makes possible important exceptions that relieve the bleak
landscape of policy paralysis. A policymaker’s ignorance of the primitives of an
economy can in some highly symmetric situations make it easier to discriminate
among policies by a utility-independent ranking. If we were to hamper utility-inde-
pendence by requiring that policy changes leave every potential agent unharmed,
these interesting cases would be excluded.

Before turning to the exceptions, we record that policy paralysis obtains when
any base model is perturbed through the addition of further states. Specifically, no
policy is utility-independent superior to an arbitrary status quo policy if L states
can be added to the base model, thus contrasting sharply with the scope for policy
change allowed by the ex ante Pareto criterion.

Theorem 3 For each base set of states �, there is a set of L states �′ such that in
any model with state space�∪�′, no policy (τ,�e �= 0, f ) is utility-independent
superior to any status quo policy (τ , 0, f ).

Since Theorem 3 does not restrict the probabilities of the states in � ∪�′, the
added states in �′ can have arbitrarily small probability. Theorem 3 treats policy
changes such that �e �= 0, which arise, for instance, when compensation for a
change in τ is attempted. It is not difficult, using more additional states, to cover
policy changes that involve only a change in τ .

Theorem 3 suffers from the drawback that the added states can vary as a func-
tion of the base model � and can therefore omit agents with the same utilities as
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agents in the base model. Consequently, to prove Theorem 3, it is sufficient to show
that some agent at some added state is harmed by any proposed policy change. If
utility functions for some agents at the added and base states were to coincide, then
even if some j at some additional state ω̂were harmed by a change from (τ,�e, f )
to (τ,�e, f )′, (τ,�e, f )′ could still be ranked utility-independent superior: other
potential agents with identical utility representations might collectively gain more
utility in expectation from the policy change than j’s expected loss at ω̂. It is
therefore impossible to evaluate policy changes looking only at the welfare of indi-
viduals changes at a subset of states: the entire state space matters. Indeed, given
any set of additional states and any policy change, there exists an accompanying
base model such that the policy change is a utility-independent improvement for
the model combining the base and additional states.5

In the certainty (S = 1) model as well, some agent can be made worse off
by a policy change even though the utility-independent ordering recommends the
change, but only when two or more agents have identical sets of cardinal utility
functions. Although in the certainty case it is plausible to dismiss as a fluke any
such violation of the diversity condition, it is the norm for the same potential util-
ity functions to arise at multiple states and for multiple agents. If, for example,
a base model specifies that agent j either has the ex post utility u j or u′

j , it is
reasonable to allow j to have each of these utilities with non-negligible probability
at some of the additional states (e.g., when the probability of j having any given
utility is independent of what preferences the other agents have). Similarly, if the
policymaker has identical information about a pair of agents, then the support of
the distribution of those agents’ utility functions should be the same. Thus, the
methodology permitted by Theorem 3 of adding idiosyncratic states to a fixed base
model can sometimes be suspect.6

Indeed, the following example shows that a highly symmetric model can allow
some allocations and policies to be ranked by the utility-independent ordering. The
example is inspired by Lerner’s (1944) argument that equalizing the distribution
of income will increase social welfare, even when individuals derive utility from
income at different rates, so long as the policymaker is ignorant about which agents
are the more efficient producers of utility. Both for Lerner and in the example below,
ignorance can make a policy criterion more discriminating. The example again illus-
trates that the utility-independent ordering can recommend policy changes that are
rejected by any ex ante ordering and therefore that the utility-independent ordering
is neither weaker nor stronger than any given ex ante ordering.

Example 1 We suppose that the policymaker believes that all agents are equally
likely to have any given set of cardinal utilities. To make this precise, define πU j =∑
ωs∈�:U j (ωs)=Uπs for any set of utilities U and agent j . Our assumption is then

5 In models of social choice, policy paralysis requires only that preference relations in certain
open sets are elements of the state space, regardless of the preferences that appear at other states
(see Mandler 1999, Theorem 4). Since agents with identical preferences have the same prefer-
ences over policies in pure social choice settings, a policy that harms one potential agent harms
all potential agents with the same utility function. For the same reason, the Lerner exception to
policy paralysis that we now consider cannot arise in pure social choice settings.

6 It is worth noting, however, that a proof for Theorem 3 need not use additional states with
utility representations that do not occur at ωs ∈ �. What is necessary is that the probability of
any ωs ∈ � that has one or more agents with utilities that appear in an additional state ω̂ is
sufficiently small.
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that the policymaker satisfies the ignorance priors (or symmetry) condition that
for any pair of agents i and j and set of utilities U , πUi = πU j . Let πU denote this
common probability.

Suppose
∑J

j=1 e j (ωs) does not vary by state and consider any allocation x that
is also state-invariant: for each j , there is a x j with x j (ωs) = x j for all ωs . Then,
for any U and u ∈ U ,

∑

(ωs , j):U j (ωs )=U

πsu(x j (ωs)) =
J∑

j=1

∑

ωs :U j (ωs)=U

= πsu(x j )

=
J∑

j=1

πU j u(x j ) = πU

J∑

j=1

u(x j ).

Now let ψ = 1
J

∑J
j=1 e j (ωs), let � be the state-invariant allocation where

each j at each ωs consumes ψ , and suppose y is another state-invariant allocation
where y j = y j (ωs) �= ψ for at least one j . So

∑

(ωs , j):U j (ωs)=U

πsu(y j (ωs)) = πU

J∑

j=1

u(y j ) and

∑

(ωs , j):U j (ωs)=U

πsu(�(ωs)) = πU

J∑

j=1

u(ψ).

For U with πU > 0 and u ∈ U , the strict concavity of u and 1
J

∑J
j=1 y j = ψ

therefore imply
∑

(ωs , j):U j (ωs)= U

πsu(ψ) >
∑

(ωs , j):U j (ωs )= U

πsu(y j (ωs)).

If we sum this inequality over the U with πU j > 0, we conclude that for any
assignment u,

J∑

j=1

Eu j (ψ) >

J∑

j=1

Eu j (y j ). (5.1)

Hence the allocation� is utility-independent superior to any state-invariant y �= �.
If L = 1, there must be a j such that y j (ωs) > ψ for all ωs and hence j must

be worse off with ψ than with y at every state. The allocation giving each agent ψ
therefore cannot be superior to y according to any of the possible ex ante orderings.
So we see that the utility-independent ordering can endorse a change in allocations
rejected by any ex ante ordering.

Some policies can be ranked as well. Assume now in addition that, for each
j, e j (ωs) also does not vary by state. If, for some j, e j (ωs) �= ψ , then any(
τ, (�e j = ψ − e j (ωs))

J
j=1, f

)
is utility-independent superior to any status quo

policy (τ , 0, f ) if τ is high enough to prevent trade from occurring at all ωs .
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Since 5.1 is a strict inequality, the example is robust in the sense that small
changes in the primitives of the model – in U j (ωs), the e j (ωs), and π – will still
allow some allocations and policies to be ranked. For the same reason, the τ in the
previous paragraph does not have to be set high enough to prevent all trade, just
high enough that only a small amount of trade occurs.

Although our conclusions are similar in spirit to Lerner (1944), Lerner’s agents
consume just one good – income – and thus all share the same ordinal preferences
(if not the same cardinal utility) whereas our ignorance priors assumption applies
to disparate preferences over many commodities.7

Our requirements that cardinally and ordinally identical potential agents are rep-
resented by the same utility function and that each U j (ωs) contains only increasing
affine (rather than all monotonic) transformations of some strictly concave utility
are both crucial for the non-paralysis conclusion.

The significance of the example is not that there can be allocations and policies
that are suboptimal according to the utility-independent or maximization defini-
tions. Simpler examples would suffice to show this (e.g., let that all agents in all
states have the same cardinal utility function). What the example underscores is
that even with no restriction on the number and diversity of preference orderings,
nontrivial policy advice is possible in some plausible cases.8

The Lerner construction notwithstanding, there is a limit to what symmetry can
accomplish. One might speculate that a planner with sufficiently symmetric infor-
mation about how different goods enter into agent utility functions would want to
lower any one of the τi , but this is not correct. For example, a low τ1 and a high
τ2 can serve as an effective tool to transfer wealth to agents who consume good 1
intensively. If agents’ indices convey no information that would allow lump-sum
transfers to the intensive good 1 consumers, then taxes can serve as the optimal
way to redistribute income. Policy paralysis can then set in: any vector of taxes can
maximize social welfare for some choice of welfare weights.

In the local policy paralysis result below, we do not assume as in Theorem 3
that certain utilities appear with non-negligible probability only at certain carefully
constructed states. We cast the result in terms of the historically more important
maximization definition of optimality. Since maximization-optimal policies are
also utility-independent optimal but the converse need not hold, results for the
maximization definition are stronger.

To avoid the redundancy in our definition of an endowment transfer, we now let
�e denote (�e2, . . . , �eJ ) and, for any policy (τ,�e, f ), set e1(ωs) = −� J

j=2
�e j (ωs).

We will say that a policy (τ,�e, f ) is differentiable if the allocation induced
by the policy is locally a continuously differentiable function of the policy instru-
ments (τ,�e). That is, there must be a continuously differentiable function g :
	 → RSL J+ , where 	 ⊂ RL+×RL(J−1) is open and contains (τ,�e), such that
g(τ ′,�e′) is an equilibrium allocation for any (τ ′,�e′) ∈ 	 and g(τ,�e) =
f . Although policies are generically differentiable (see the proof of Theorem 2),

7 For other formalizations of Lerner’s argument, see McManus et al. (1972), McCain (1972),
and Sen (1973), which all suppose that each agent’s utility is a function of one good.

8 Other, more trifling policy recommendations can also be made. For example, if τ̄ is high
enough to prevent trade at all ωs , then any (τ,�e = 0) that allows some trade at some ωs is a
utility-independent improvement.
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welfare maximization need not always select one of these generic policies; a non-
generic, nondifferentiable policy can be dictated. We thus incur a small loss in
generality in considering only differentiable policies.

One way to generate the welfare functions that can arise with (�,π) is to pick
an arbitrary assignment u and then multiply each ex post utility function u j (·, ωs)
by some positive weight b js where any pair of identical ex post utilities is multi-
plied by the same weight.9 Let B denote this set of weights, {b ∈ RS J++ : U j (ωs) =
U j ′(ωs′) ⇒ b js = b j ′s′ }, which has dimension equal to the number of distinct
utilities in �. Given a differentiable policy (τ,�e, f ) and an assignment u, and
letting g be the function specified above, we parameterize welfare functions by
defining wu : B ×	 → R by wu(b, (τ,�e)) = ∑J

j=1 Eû j (g j (τ,�e)), where û
is the assignment û = b · u.

We put aside the question of whether equilibria exist at boundary policies
by now requiring that endowment redistributions are in the set �E = {�e :
e j (ωs)+�e j (ωs) ≥ 0 for all j and ωs} and assuming for all (�e ∈ �E, τ ) that
an equilibrium exists at each ωs .

Definition 6 A differentiable policy(τ,�e ∈ �E, f ) is a regular maximum for
the assignment u if (1) whenever (τ,�e, f )′ has f ′ �= f and �e′ ∈ �E,

∑J
j=1

Eu j ( f j ) >
∑J

j=1 Eu j ( f ′
j ), and (2) D2

τ,�ewu(1J S, (τ,�e)) is negative definite.10

Definition 7 A differentiable policy(τ,�e, f ) satisfies the rank condition for the
assignment u if D2

(τ,�e),bwu(1J S, (τ,�e)) has rank LJ.

Differentiability and regularity of a policy are the traditional conditions that
guarantee a maximum is well-behaved; they ensure that calculus can be applied,
that a strict second order condition obtains, and that two or more policies do
not simultaneously maximize the same welfare function. The assumptions are
also “open” properties that continue to hold if the model is smoothly perturbed.
The rank condition is an open property as well since L J is the maximal rank of
D2
(τ,�e),bwu(1J S, (τ,�e)) when there is a sufficient diversity of utilities. But the

rank condition is substantive and its meaning is important. It says that there are
enough utility functions in the model that for each policy instrument there is an
independent linear combination of changes in welfare weights that will alter the
marginal social welfare of that instrument. Thus each policy instrument has a dis-
tinctive effect on social welfare; it affects the welfare of a different combination of
ex post utilities. This requirement is not onerous: one would expect, for example,
that a change in some τi will have a different impact on intensive buyers and sellers
of good i compared to its impact on other potential agents. Following the policy
paralysis theorem, we show that we can perturb a model in such a way that these
distinctive effects of different policy instruments are present.

Theorem 4 The policy instruments (τ,�e) such that some differentiable (τ,�e, f )
is a regular maximum for some u and where wu satisfies the rank condition form
an open set.

9 We do not by this method generate all possible welfare functions since we are restricted
to linear transformations of the u j (·, ωs). But the excluded constant terms permitted by affine
transformations never change any ranking of policies determined by a sum of utilities.

10 For any positive integer m, 1m denotes the vector of m 1’s.
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Suppose that the entire uncertainty model is perturbed slightly – say by the
addition of a small consumption externality – in such a way that the primitives
of the model change smoothly as a function of the perturbation. If the status quo
policy is differentiable and a regular maximum and the corresponding rank condi-
tion is satisfied, it will remain so after a small enough perturbation. So Theorem
4 indicates that when a policymaker aims to maximize some welfare function, a
small externality will induce no policy response.

The proof of Theorem 4, in the appendix, reverses the standard implicit function
procedure of solving the first order conditions of a welfare maximization problem
for an optimal allocation as the parameters of the problem change; instead we solve
the first order conditions for welfare weights as the allocation changes. A global
version of Theorem 4, for either the utility-independent or maximization defini-
tions of optimality, faces difficulties. The Example above is a sign that there is no
general condition that rules out models in which many policies are suboptimal in
the utility-independent sense. And even when all policies are utility-independent
optimal, a paralysis result using the more stringent maximization definition of opti-
mality faces the hurdle that the set of agent utilities reachable through some policy
is not convex, in which case utility-independent policies need not be maximization
optimal.

We now show that the rank condition is weak in that the inclusion of small-
probability states can ensure the condition is satisfied. Note that as we add more ex
post agents to the model, more columns are added to D2

(τ,�e),bwu(1J S, (τ,�e)) but
not more rows; the number of rows always equals the number of policy instruments
LJ.

Theorem 5 For any differentiable policy (τ,�e, f ) for (�,π) that is a regular
maximum for some u, there exists a (�̂, π̂ ) such that, for every λ ∈ [0, 1), the model
(�∪ �̂, (λπ, (1 − λ)π̂)) has a differentiable policy that is a regular maximum for
some u∗ such that wu∗ satisfies the rank condition.

6 Discussion

Our results are both positive and negative. The ex ante Pareto ordering will recom-
mend a move from most status quo policies, but the ordering incorporates a system
of interpersonal welfare comparisons. On the other hand, a thorough avoidance
of interpersonal comparisons can lead a vast number policies to be optimal. Our
purpose is not to judge if one approach is better than the other; they are geared
to different purposes. The ex ante ordering appeals to the principle that ex ante
no individual should be made worse off by a policy change. The utility-indepen-
dent ordering (or maximization optimality) assumes that no system for making
interpersonal welfare comparisons should be granted privileged status.

Our results illuminate some common complaints about the usefulness of the
Pareto criterion. When markets are incomplete, it is well-known that a policy-
maker can institute Pareto improvements by dictating transfers of initial-period
asset holdings. The necessary transfers require detailed information, however, and
so it is tempting to conclude that such policy interventions are impractical (see,
e.g., Geanakoplos and Polemarchakis 1990). Similar observations were made in
the wake of the theorem of the second best (Lipsey and Lancaster 1956): when
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some distortions are uncorrectable, optimal policies can be counter-intuitive and
depend on unobtainable information.

In the incomplete-markets model, a planner with policymaking uncertainty
faces two sources of uncertainty: the uncertainty facing agents and an additional
uncertainty about the parameters of the model. If the planner can make interper-
sonal comparisons of welfare and construct an ex ante ordering, he or she could then
devise policies that are improving relative to the status quo policy of letting agents
choose their asset portfolios without government intervention. Pareto-improve-
ments are present in the incomplete markets model in the absence of policymaking
uncertainty; the inclusion of policymaking uncertainty simply adds new dimen-
sions of market incompleteness for the hypothetical ex ante agents. But section
4 shows that policymaking uncertainty alone, even when the ex post agents face
no market incompleteness, is typically enough to guarantee that an ex ante Pareto
improvement is possible. On the other hand, utility-independent or maximization
welfare rules argue against any change of policies and this conclusion does not
hinge on market incompleteness. The set of optimal policies, as section 5 shows,
is sizable even when markets are complete. Thus, market incompleteness does
not introduce any special or additional problem of policy paralysis: the difficulty
lies in not knowing the model with certainty and simultaneously trying to avoid
interpersonal comparisons of welfare. Finally, with incomplete markets and no
policymaking uncertainty, we return to the puzzle that opened this paper: a planner
who knows the model could simply mandate a first-best optimum of its choosing. It
is therefore difficult to name a scenario where market incompleteness by itself calls
for a second-best Pareto improvement reached by a forced transfer of initial-period
assets.

As for the theory of the second best, consider an economy with some uncorrect-
able distortions but where some instruments remain in the policymaker’s toolkit. If
a policymaker can formulate an explicit state space to describe his or her uncertainty
and can furnish ex ante preferences, the ex ante ordering will typically recommend
some policy change from an arbitrary status quo. In this paper, for example, one
could suppose that some or all of the taxes on net trades are uncorrectable; the proof
of Theorem 2 indicates that the endowment transfers alone can still engineer an
ex ante improvement. On the other hand, if a utility-independent or maximization
welfare rule is in effect, then policy paralysis will occur even when the policy-
maker has the freedom to set all tax rates equal to zero. It is again the difficulty of
specifying ex ante preferences that makes policy adjustment problematic, not the
presence of uncorrectable distortions.

A final word is necessary on allocations and policies that are optimal ex post.
An allocation x ex post dominates x ′ if, for all j and ωs, u j (x j , ωs) ≥ u j (x ′

j , ωs),
with strict inequality for some j and ωs . So an allocation x is ex post optimal if
there is no feasible x ′ that ex post dominates x , and a policy (τ,�e, f ) is ex post
optimal if there is no (τ ′,�e′, f ′) such that f ′ ex post dominates f . Since ex post
optimality does not weigh the gains of one potential preference relation against
the losses of another, it does not make interpersonal comparisons of utility. As
our framework now stands, a policymaker can reach an ex post optimal allocation
by setting τ = 0. Since any status quo policy with τ > 0 will usually not reach
an ex post optimal allocation, policy paralysis would seem to disappear. But this
reasoning is unpersuasive. First, although a policy that sets τ = 0 is indeed unusual
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in reaching allocations that are ex post optimal, that does not mean ex post opti-
mal policies are rare. Indeed, under the assumptions of Theorem 3, every policy
change from the status quo harms some potential agent and hence arbitrary status
quo policies are ex post optimal as well. Bear in mind that for an allocation x to
be ex post optimal, it must be that, for every ωs, x(ωs) is Pareto undominated by
another feasible allocation at ωs , and this can be hard to achieve [these x form a
S(J −1)-dimensional subset of the SL(J −1)-dimensional set of allocations]. But
for a policy to be ex post optimal, it must merely be that every alternative policy
harms some agent at some state. Since policymakers are in the business of selecting
policies, the ex post optimality of an allocation x achieved by some policy is of
dubious relevance; the allocations that x ex post dominates will typically not be
reached by any policy. Second, and just as importantly, the ex post optimality of
τ = 0 is an artifact of the way we have modeled distortions. Had there been exter-
nalities, for instance, in addition to taxes, and if the policymaker were uncertain
about the parameters of the externalities, there would usually be no tax policy that
achieves an ex post optimal allocation. Ex post optimality therefore does not solve
the policy paralysis problem.

Appendix

Proof of Theorem 1 The set of ex ante optimal allocations is a manifold of dimen-
sion J − 1 (see, e.g., Mas-Colell 1985, Proposition 4.6.1), which we denote Y ,
and thus, generic subsets of Y are well-defined. For any ex ante optimal allocation
x >> 0 (we can ignore boundary optima as nongeneric), there is a supporting
p(x) ∈ RSL++ such that each DEu j (x j ) is proportional to p(x), and we arrange
p(x) as the S × L matrix P(x). We normalize p(x) and hence P(x) by requiring
p(x) to lie in the SL dimensional unit simplex.

Since L ≥ S, we can define for each (x, (e, h)) ∈ Y × Q the square matrices
Ps, s = 1, . . . , S, by setting, for k ≤ s, the kth row of Ps equal to the first s coordi-
nates of pωk (x).We now show that there is a generic subset of Y × Q such that PS
has rank S. Since for any (x, (e, h)) ∈ Y × Q, P1 trivially has rank 1, it is sufficient
to show for arbitrary s < S that if there is a generic subset Gs ⊂ Y × Q at which
Ps with rank s, then there is a generic subset Gs+1 ⊂ Y × Q at which Ps+1 with
rank s +1. We define the function gs+1 : Gs → R by setting gs+1(x, (e, h)) equal
to the determinant of Ps+1. Calculating det Ps+1 by cofactor expansion along row
s + 1, the derivative of det Ps+1 with respect to the (s + 1)st entry of pωs+1(x)
must be nonzero given the induction assumption that Ps has rank s. Moreover,
we can change this coordinate of p(x) without changing any other coordinate by
increasing Dxs+1(ωs+1)Eu j for all j . Thus Dgs+1 �= 0, and so by the implicit func-
tion theorem, the subset of Gs such that det Ps+1 = 0, say Zs+1, is a manifold of
dimension equal to dim(Y × Q)− 1 and hence a closed and measure-0 subset of
Y × Q. We then set Gs+1 = Gs\Zs+1. Hence on GS, P(x) has rank S. Moreover,
by Fubini’s theorem, there must be a generic subset G ⊂ Q such that, for all
(e, h) ∈ G, P(x) has rank S for all x in a generic subset of the ex ante optimal
allocations of (e, h).
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For any such x , define for each j, b j = (pω1(x) ·x j (ω1), . . . , pωS (x) ·x j (ωS)).
Since P(x) has rank S, there is for any j a solution �e j to (pω1(x) · (�e j +
e j (ω1)), . . . , pωS (x) · (�e j + e j (ωS))) = b j , that is, a �e j such that

P(x)�e j = b j − (pω1(x) · e j (ω1), . . . , pωS (x) · e j (ωS)). (A.1)

For j = 2, . . . , J , set �e j as a solution to A.1, and set �e1 = −∑J
j=2�e j ; it is

readily confirmed that�e1 also solves A.1 for j = 1. Since, for each ωs, pωs (x) is
an equilibrium price vector for the economy at ωs when τ = 0 and�e is specified
as above, setting f = x reaches the ex ante optimal allocation x . ��
Proof of Theorem 2 We first briefly sketch a proof that, for any τ , there is a generic
subset of economies G ⊂ Q such that for any (e, h) ∈ G and any equilibrium allo-
cation x(ωs) in state s of (e, h) there exists a C1 function χωs from an open set
	O ⊂ RL+×RL(J−1) of policy instruments that contains (τ ,�e = 0) to allocations
such that (1) χωs (τ ,�e = 0) = x(ωs) and (2) for any (τ,�e) ∈ 	O , χωs (τ,�e)
is a locally unique equilibrium allocation of (e, h) in state s when the policy instru-
ments are (τ,�e).

Due to the kinks in the budget set as agents switch from buying to not buying
or from selling to not selling a good, an equilibrium is locally characterized by an
array of market-clearing and first-order conditions that depends on the set of goods
each agent buys, sells, or neither buys nor sells. Specifically a first order condition
(FOC) on some j’s marginal utility for k must hold with equality only if j buys
or sells k, not when j consumes his endowment. Putting aside the unique no-trade
allocation, we can restrict attention to arrays of equilibrium conditions where each
good that is bought by some agent is sold by some agent.

Fixing a state and array, let p̂ denote the prices of the goods that are traded with
one price set equal to 1, let x̂ and ê respectively denote profiles of consumption and
endowments on the coordinate subspace in RL J where each coordinate is a good
i traded by some agent j . Let F denote the C1 function whose domain has typical
element ((e, h), t, p̂, x̂, λ), where λ is the profile of the agents’ Lagrange multi-
pliers, that is defined by the agents’ FOCs for all goods the agents buy or sell, the
agents’ budget constraints, the definition of t , and the market-clearing conditions
of the traded goods (agents consume their endowment of untraded goods). If (p, x)
is an equilibrium for the economy (e, h) with taxes τ , there is an array of equi-
librium conditions such that, for the resulting F and λ, F((e, h), t, p̂, x̂, λ) = 0.
We omit the largely routine calculation that DF((e, h), t, p̂, x̂, λ) has full row
rank whenever F((e, h), t, p̂, x̂, λ) = 0. Iterating this argument over all arrays of
equilibrium conditions, the transversality theorem implies that generically equilib-
rium allocations are locally isolated. To exclude the nondifferentiability that occurs
when simultaneously a j satisfies the FOC for buying or selling i and xi j −ei j = 0,
we add to the range of each F the additional term xi j −ei j , thus defining a function
F∗. We again omit the calculation showing that DF∗ has full row rank, which
shows that generically if F∗(t, p̂, x̂, λ) = 0 then Dt, p̂,x̂,λF∗(t, p̂, x̂, λ) has full
row rank, and hence since Dt, p̂,x̂,λF∗(t, p̂, x̂, λ) has fewer columns than rows that
there is no (t, p̂, x̂, λ) such that F∗(t, p̂, x̂, λ) = 0. Thus at some generic set G
equilibrium allocations are locally unique and the implicit function theorem gives
us the function χ = (. . . , χωs , . . .).
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Now consider an arbitrary selection of S of the functions F defined above,
F = (Fω1, . . . , FωS ), one Fωs chosen from each state. We restrict ourselves to an
open subset of the domain of F, say Y with typical element y, that contains all 0’s
of F and such that each Dt (ωs ), p̂(ωs ),x̂(ωs),λ(ωs)Fωs is nonsingular and hence that
χ is C1 on some open T ⊂ RL × RL(J−1). Let µ : T × Y → R J defined by
µ j (τ,�e, y) = Eu j (χ j (τ,�e)) = ∑S

s=1πsu j (χ j,ωs (τ,�e, y)) indicate the ex
ante utility levels that occur withχ as a function of the policy instruments. The proof
is complete if we can show for a generic subset of economies that, at any y with
F(y) = 0, Dτ,�eµ(τ, 0, y) has rank J: since then the linear map Dτ,�eµ(τ, 0, y)
is onto, there is a (τ ′,�e′) such that Dτ,�eµ(τ̄ , 0, ȳ)(τ ′,�e′) >> 0 and hence
for some ε > 0 some allocation reached by (τ,�e) + ε(τ ′,�e′) increases each
Eu j .

Letting εi j denote a transfer from agent 1 to agent j of good i , consider the
derivatives of µ with respect to ε22, ε12, ε13, . . . , ε1J . We define the functions Fi ,
i = 1, . . . , J , by appending to F an additional term equal to the determinant of a
matrix Mi of derivatives of µ. For F1, M1 is just the 1 × 1 matrix Dε22µ1. Each
Mi , i ≥ 2 is an i × i matrix whose j th row consists of the derivatives of µ j with
respect to the first i of the variables ε22, ε12, ε13, . . . , ε1J . Thus, each Mi , i ≥ 2 is
Mi−1 with an additional row and column added. We show that there is a generic
subset of economies for which each Fi has no 0 and hence that Dτ,�eµ(τ, 0, y)
has rank J when F(y) = 0.

We can decompose the effects of changes in the εi j onµ into a sum of the direct
utility effects of the transfers, which depend on Du j , and the indirect effects via
changes in the p(ωs) and t, which depend on D2u j but not on Du j (Geanakoplos
and Polemarchakis (1986)). The matrix of the direct effects of ε22, ε13, . . . , ε1J on
µ, which we call DIR,

ε22 ε12 ε13 ε1J⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
S∑

s=1
πs Dx21(ωs )u1(x1, ωs ) −

S∑

s=1
πs Dx11(ωs )u1(x1, ωs ) −

S∑

s=1
πs Dx11(ωs )u1(x1, ωs ) . . . −

S∑

s=1
πs Dx11(ωs )u1(x1, ωs )

S∑

s=1
πs Dx22(ωs )u2(x2, ωs )

S∑

s=1
πs Dx12(ωs )u2(x2, ωs ) 0 . . . 0

0 0
S∑

s=1
πs Dx13(ωs )u3(x3, ωs ) 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

0 0 0
S∑

s=1
πs Dx1J (ωs )u J (xJ , ωs )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The function F1 is transverse to 0 (i.e., DF1 has full row rank whenever F1 = 0)
since we may simultaneously multiply

(
Du j (·, ωs), λ j,ωs

)
for each j and some

ωs by the same constant, thus perturbing the upper left term of DIR while leav-
ing the value of F unchanged. It follows that for a generic subset of economies
F1 = 0 has no solution: if it did then the matrix of derivatives of F1 with respect
to t (ωs), p̂(ωs), x̂(ωs), λ(ωs), s = 1, . . . , S, would have full row rank, which
is impossible since this derivative has more rows than columns. We henceforth
remove the closed 0-measure set of parameters such that F1 = 0 from the domain
of the Fi . To show that F2 is transverse to 0 requires an initial argument that

Dx11(ω1)u1(x1, ω1)

Dx21(ω1)u1(x1, ω1)
= Dx11(ω2)u1(x1, ω2)

Dx21(ω2)u1(x1, ω2)
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is not satisfied at any 0 of F for a generic subset of economies. This is readily
established with a separate transversality argument that shows that if we add this
equation to an arbitrary pair of F’s for the economies at states 1 and 2, then the
resulting function is transverse to 0 (perturb, at one of the states, every j’s mar-
ginal utility for one of the goods and that good’s price) and hence this equation is
generically not satisfied at a 0 of F. Given that this equality is not satisfied, we may
by independently rescaling (Du2(·, ω1), λ2,ω1) and (Du2(·, ω2), λ2,ω2) perturb the
row 2-column 2 entry of the DIR, without changing the other entries of DIR or the
value of F. If we calculate det M2 by expansion of cofactors in the second row, and
given our earlier restriction to parameters such that F1 �= 0 and hence det M1 �= 0,
we see that F2 is transverse to 0. We then proceed by induction, restricting the
domain of each Fi , i = 3, . . . , J , to exclude the points at which Fi−1 = 0 has a
solution: simply by rescaling (Dui (·, ω1), λi,ω1), each of the remaining Fi is seen
to be transverse to 0, using the cofactor expansion of det Mi along row i . Thus
generically Dτ,�eµ(τ, 0, y) has rank J when F(y) = 0, as desired. ��
Proof of Theorem 3 Choose �′ so that, for all j and ωl , (1) U j (ω

l) �= Uh(ω
l) for

any h �= j and U j (ω
l) �= Uh(ω̂) for any h and ω̂ ∈ � ∪ �′\ωl , (2) the vectors

Dx j (ω
l )(e j (ω

l), ωl), l = 1, . . . , L , are linearly independent, and (3) e(ωl) >> 0

is a Pareto optimal allocation for the economy
(
u j (·, ωl), e j (ω

l)
)J

j=1.

The strict concavity of the u j (·, ωl) and (3) imply for, any status quo policy
(τ , 0, f ), that f j (ω

l) = e j (ω
l) for all j and ωl . Given (1), it is sufficient to

show that at any (τ,�e �= 0, f ) there exists a ωl and j such that u j (e j (ω
l), ωl) >

u j ( f j (ω
l), ωl). Suppose, to the contrary, that u j ( f j (ω

l), ωl) ≥ u j (e j (ω
l), ωl) for

all ωl and j , and hence (given strict concavity) that f j (ω
l) = e j (ω

l) for all ωl

and j . Given the arguments in section 2 on the suboptimality of equilibria where
traded goods have nonzero taxes, it follows that if �ei j �= 0 for any agent j and
any good i and J ≥ 2 and L ≥ 2, then τi = 0. Therefore t (ωl) = 0 which also
holds when J = 1 or L = 1 since then there is no trade. From the definition of
the budget constraint,p(ωl) · (e j (ω

l) − (e j (ω
l) + �e j )) ≤ 0, where p(ωl) is an

equilibrium price vector corresponding to f at ωl . Hence p(ωl) · �e j ≤ 0 and,
since

∑J
j=1�e j = 0, p(ωl) · �e j = 0. Since, for all j and ωl , there is some

λ
l
j > 0 such that pi (ω

l) = λl
j Dxi j (ω

l )u j (e j (ω
l), ωl) for all goods i such that

�ei j �= 0, λl
j Dx j (ω

l )u j (e j (ω
l), ωl) · �e j = 0. Condition (2) then implies that

�e j = 0 for all j , a contradiction. ��

Proof of Theorem 4 Letting (τ̂ ,�ê, f̂ ) be differentiable and a regular maximum
for u and such that D2

(τ,�e),bwu(1J S, (τ̂ ,�ê)) has rank LJ, there must be a LJ

dimensional coordinate subspace of B, say B∗, such that D2
(τ,�e),b∗wu(1J S, (τ̂ ,�ê))

is nonsingular, where b∗ denotes a typical element of B∗. Label coordinates so that
B∗ is spanned by the first LJ coordinates of R J S . By the implicit function theorem,
there is a C1 function, say b∗, from some open subset 	′ ⊂ RL J containing
(τ̂ ,�ê) to B∗ such that b∗(τ̂ ,�ê) = 1L J and

D(τ,�e)wu((b
∗((τ,�e)), 1J S−L J ), (τ,�e)) = 0
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for all (τ,�e) ⊂ 	′. The fact that (τ̂ ,�ê, f̂ ) is a regular maximum implies that
there are open sets BO ⊂ B∗ and	O ⊂ RL J containing 1L J and (τ̂ ,�ê), respec-
tively, such that for b∗ ∈ BO and (τ,�e) ∈ 	O , D2

τ,�ewu((b∗((τ�e)), 1J S−L J ),
(τ,�e)) is negative definite.

The above establishes that all (τ,�e) ∈ 	O are strict maxima of wu for some
b ∈ BO if we constrain (τ,�e) to be an element of	O . We now show that there is
an open 	∗ ⊂ 	O containing (τ̂ ,�ê) such that, for some b, all (τ,�e) ∈ 	∗ are
unconstrained strict maxima ofwu . Suppose, to the contrary, that there is a sequence
{(τ,�e)t }, where (τ,�e)t �= (τ̂ ,�ê) for all t , such that (τ,�e)t → (τ̂ ,�ê) and
such that each (τ,�e)t is not a strict maximum ofwu . Let {(τ̃ ,�ẽ)t } be a sequence
such that, for all t, (τ̃ ,�ẽ)t is a (possibly nonstrict) maximum of wu when b =
(b∗((τ,�e)t ), 1J S−L J ) and where �ẽt ∈ �E . Since each (τ,�e)t is not a strict
maximum, we may choose {(τ̃ ,�ẽ)t } so that {(τ̃ ,�ẽ)t } �= (τ,�e)t for all t . Since
each (τ,�e)t is a strict maximum of wu when b = (b∗((τ,�e)t ), 1J S−L J ) and
(τ,�e) is restricted to 	O , (τ̃ ,�ẽ)t /∈ 	0 for all t . We have already restricted
�ẽt to be an element of the compact set �E ; we may also assume that τ̃ t lies
in a compact subset of RL+ since if τ is sufficiently large, no trade and hence
the same f occurs. Since therefore we can restrict ourselves to a compact set of
policy instruments, say 	, and 	O is open, there is a subsequence of (τ̃ ,�ẽ)t
converging to a (τ ,�e) ∈ 	\	O . Given the continuity of wu and the fact that
b∗((τ, �e)t ) → 1L J , (τ ,�e) is an unconstrained maximum of wu when b = 1,
contradicting (τ̂ ,�ê) being a strict maximum.

The openness of the policies that satisfy Definition 6 (2) is self-evident. In
addition, since L J is the maximal rank of D2

(τ,�e),bwu(1J S, (τ,�e)), the policies
that satisfy the rank condition are also open, which completes the proof. ��
Proof of Theorem 5 Let (τ ,�e, f )denote the given differentiable policy for (�,π).
We let �̂ consist of two types of states and require for all ω ∈ �̂ that each utility
repeats no utility from any other state in � and no utility for any other agent at ω.

The first type is {ω̃1, . . . , ω̃L}. Choose the u j (·, ω̃i ) so that (i) Dx j (ω̃i )u j (e j (ω̃i )

+�e j , ω̃i ) = Dx j ′ (ω̃i )u j ′(e j ′(ω̃i )+�e j ′, ω̃i ) for all pairs ( j, j ′), (ii) the equilib-

rium allocation at ω̃i is a C1 functionχ of (τ,�e), (iii) each u j (·, ω̃i )◦χ j is differen-
tiably strictly concave, and (iv) Dx1(ω̃1)u1(e1(ω̃1) + �e1, ω̃1), . . . ,
Dx1(ω̃L )u1(e1(ω̃L)+�e1, ω̃L) are linearly independent.

To assemble the second type, we first define preliminary statesωi , i = 1, . . . , L .
For i = 1, . . . , L − 1, define ωi by letting each j have a utility u j (·, ωi ) such
that, for any (xi j , xL j ) ∈ R2+, u j (·, (xi j , xL j ), ω

i ) is a constant function and, for
any (x−i j , x−L j ) ∈ RL−2+ , u j (·, (x−i j , x−L j ), ω

i ) is differentiably strictly con-
cave and differentiably strictly increasing. Set e(ωi ) so that e j (ω

i ) is a con-
stant function of j . Choose the J utility functions on goods i and L so that
(1) for (τ,�e) in a neighborhood of (τ ,�e), ωi has a locally unique equilib-
rium allocation given by a C1 function χ of (τ,�e), (2) letting µ j,ωi denote the
composition u j (·, ωi ) ◦ χ j , then Dτi

µ1,ωi (τ , �e) > 0, DτL
µ1,ωi (τ , �e) < 0,

Dτi
µ2,ωi (τ , �e) < 0, and DτL

µ2,ωi (τ , �e) > 0, and (3) each µ j,ωi is differ-
entiably strictly concave. Define ωL by letting all agents derive utility only from
goods L and L − 1, letting conditions (1) and (3) be satisfied, and by requir-
ing (2′): DτL

µ1,ωL (τ , �e) > 0, DτL−1
µ1,ωL (τ ,�e) < 0, DτL

µ2,ωL (τ , �e) < 0,
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and DτL−1
µ2,ωL (τ ,�e) > 0. We now use ω1, . . . , ωL to specify the second type

of states in �̂: for each ωi , let �i denote the J! states constructed by taking all
possible permutations of the agent indices of the utilities in ωi . Finally, we set
�̂ = {ω̃1, . . . , ω̃L} ∪�1 ∪ · · · ∪�L . Let Ŝ = #�̂.

Let v(b, (τ,�e)) denote
∑J

j=1
∑
ωs∈�̂π̂ sb jsu j

(
χ j,ωs (τ,�e), ωs

)
, where π̂

satisfies π̂ s = π̂ s′ when ωs and ωs′ are elements of the same �i . We define r js

for ωs ∈ �̂ and j = 1, . . . , J , so that, for the assignment u = (. . . , r jsu j , . . .) for

the utilities that appear in �̂, v(1J Ŝ ,·) is maximized at (τ ,�e). To see that this can
be done, notice that any change in τ i will neither affect the x(ω̃l) (since, given (i),
x(ω̃l) is Pareto optimal at ω̃l) nor affect x(ωs) for anyωs derived fromωk, k �= i, L
since agents at these ωs neither buy nor sell i . Conditions (2) and (2′) then allow

r js (for ωs derived from ωi and ωL ) to be set so that Dτi v(1
J Ŝ , (τ , �e)) = 0. As

for the �e j argument of v, our inclusion of all permutations of the agent indices
and our restriction on π̂ imply that for any utility function û that appears at some
ωs in some�i ,

∑
ωs∈�i π̂s D�e jµû(ωs)(τ ,�e) = 0, where µû(ωs)(τ,�e) gives the

utility level of the agent that has û at ωs at policy (τ, �e). Given condition (i), if
we set each r js for ωs ∈ {ω̃1, . . . , ω̃L} equal to 1, then (τ , �e) must maximize

v(1J Ŝ ,·).
Let f̂ (ωs) forωs ∈ �̂ be given by the χ functions we have defined, evaluated at

(τ ,�e). Our differentiability assumptions imply that (τ ,�e, f̂ ) is a differentiable
policy for (�̂, π̂), while the concavity assumptions on the u j (·, ω̃i ) ◦ χ j and the
µ j,ωi and our choices for the r js imply that (τ ,�e, f̂ ) is a regular maximum for

(. . . , r jsu j , . . .) in the model (�̂, π̂). It follows that (τ ,�e, f ∗), where f ∗ is f
for ωs ∈ � and f̂ for ωs ∈ �̂, is a differentiable and a regular maximum for
the assignment u∗, consisting of the u given in the Theorem for the utilities in �
and (. . . , r jsu j , . . .) for the utilities in �̂, in the model (� ∪ �̂, (λπ, (1 − λ)π̂))
generated by any λ ∈ [0, 1].

It remains to show that wû satisfies the rank condition. Consider the columns

of the matrix D2
(τ,�e),bv(1

J Ŝ, (τ,�e)) that correspond, respectively, to the b’s

assigned to agents 2 through J at ω̃1, . . . , ω̃L and the b’s assigned to u1(·, ωi ), i =
1, . . . , L . Given our assumptions on the µ1,ωi and the Pareto optimality of the
allocations at the ω̃ states, these columns have the form

�e2
...

�eJ
τ1
...

τL−1
τL

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P̃2 0 • · · · • •
. . .

...
...
...

0 P̃J • · · · • •
0 · · · 0 + 0 0
...

...
. . .

0 · · · 0 0 + −
0 · · · 0 − · · · − +

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where P̃i is the square matrix with columns Dx j (ω̃i )u j (e j (ω̃i ) + �e j , ω̃i ), j =
2, . . . , J , and +’s and −’s indicate the signs of entries. Since the linear indepen-
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dence assumption (iv) implies that each P̃i is nonsingular, the above matrix of col-
umns has rank L J . Since the submatrix of D2

(τ,�e),bwu∗(1J S, (τ,�e)) that consists
of the columns that correspond to the same variables has the same rank as the above
matrix (each column merely being rescaled by (1−λ)), D2

(τ,�e),bwu∗(1J S, (τ,�e))
also has rank L J .

To ensure that the utilities in the �i meet the maintained assumptions of the
model, perturb the utilities given above by adding a small multiple of a differentia-
bly strictly concave and differentiably strictly increasing function of the remaining

L−2 goods. Since D2
(τ,�e),bv(1

J Ŝ, (τ,�e))having rank L J is a full rank condition,

its rank will persist for a small perturbation. And given that D2
(τ,�e),bv(1

J Ŝ, (τ,�e))
has rank L J , the implicit function theorem implies that we may adjust the b’s so as

to maintain the equalities Dτi v(1
J Ŝ, (τ,�e)) = 0 and D�e j v(1

J Ŝ, (τ,�e)) = 0.
��
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